Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Eur J Pharm Sci ; 192: 106670, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38070782

RESUMEN

Aggregation has been widely described as a factor contributing to therapeutic antibody immunogenicity. Although production of high-affinity anti-drug antibodies depends on the activation of CD4 T lymphocytes, little is known about the T-cell response induced by antibody aggregates, especially for aggregates produced in mild conditions resulting from minor handling errors of vials. Large insoluble infliximab (IFX) aggregates produced in severe elevated temperature stress conditions have been previously shown to induce human monocyte-derived dendritic cell (moDC) maturation. We here showed that large IFX aggregates recruit in vitro a significantly higher number of CD4 T-cells compared to native IFX. Moreover, a larger array of T-cell epitopes encompassing the entire variable regions was evidenced compared to the native antibody. We then compared the responses of moDCs to different types of aggregates generated by submitting IFX to mild conditions of various times of incubation at an elevated temperature. Decreasing stress duration reduced aggregate size and quantity, and subsequently altered moDC activation. Of importance, IFX aggregates generated in mild conditions and not altering moDC phenotype generated an in vitro T-cell response with a higher frequency of CD4 T cells compared to native IFX. Moreover, cross-reactivity studies of aggregate-specific T cells showed that some T cells could recognize both native and aggregated IFX, while others responded only to IFX aggregates. Taken together, our results suggest that aggregation of antibodies in mild elevated temperature stress conditions is sufficient to alter moDC phenotype in a dose-dependent manner and to increase T-cell response.


Asunto(s)
Linfocitos T CD4-Positivos , Monocitos , Humanos , Infliximab/farmacología , Linfocitos T CD4-Positivos/metabolismo , Temperatura
2.
Anal Bioanal Chem ; 413(25): 6425-6434, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34401927

RESUMEN

The use of magnetic beads bio-functionalized by antibodies (Ab) is constantly increasing with a wide range of biomedical applications. However, despite an urgent need for current methods to monitor Ab's grafting process and orientation, existing methods are still either cumbersome and/or limited. In this work, we propose a new simple and rapid analytical approach to evaluate antibody orientation and density on magnetic beads. This approach relies on the cleavage by IdeS, a highly specific protease for human immunoglobulin G (hIgG), of immobilized antibodies. The F(ab)2 and Fc fragments could be then accurately quantified by size exclusion chromatography (SEC)-coupled to fluorescent detection (FLD), and the ratio of these fragments was used to give insight on the IgG orientation at the bead surface. Four different commercially available magnetic beads, bearing carboxyl groups, tosyl groups, streptavidin, or protein G on their surface have been used in this study. Results obtained showed that this approach ensures reliable information on hIgG orientation and bead surface coverage. Protein G magnetic beads demonstrated an optimal orientation of antibodies for antigen capture (75% of accessible F(ab)2 fragment) compared to tosylactivated, carboxylated, and streptavidin ones. Capture efficiency of the different functionalized beads towards human TNF-α immunocapture, a biomarker of inflammation, has been also compared. Protein G beads provided a more efficient capture compared to other beads. In the future, this approach could be applied to any type of surface and beads to assess hIgG coverage and orientation after any type of immobilization. A rapid and simple approach to evaluate orientation and density of antibodies immobilized on magnetic beads.


Asunto(s)
Anticuerpos Inmovilizados , Inmunoglobulina G/química , Separación Inmunomagnética/métodos , Factor de Necrosis Tumoral alfa/química , Proteínas Bacterianas/química , Fragmentos Fc de Inmunoglobulinas/química , Campos Magnéticos , Estreptavidina/química , Compuestos de Tosilo/química
3.
J Immunol ; 205(9): 2351-2361, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32989091

RESUMEN

The development of anti-drug Abs in response to biological products (BP) is a major drawback in the treatment of patients. Factors related to the patient, the treatment, and the product can influence BP immunogenicity. Among these factors, BP aggregates have been suggested to promote immunogenicity by acting as danger signals recognized by dendritic cells (DC) facilitating the establishment of an anti-BP CD4 T cell-dependent adaptive immune response leading to anti-drug Abs production. To date, little is known on the mechanism supporting the effect of aggregates on DCs and consequently on the T cell response. The aim of this work was to identify key signaling pathways involved in BP aggregate DC activation and T cell response. We generated aggregates by submitting infliximab (IFX), an immunogenic anti-TNF-α chimeric Ab, to heat stress. Our results showed that IFX aggregates were able to induce human monocyte-derived DC (moDC) maturation in a concentration-dependent manner. Aggregate-treated moDCs enhanced allogeneic T cell proliferation and IL-5, IL-9, and IL-13 production compared with native Ab-treated moDCs. We then investigated the implication of FcγRIIa and spleen tyrosine kinase (Syk) in DC activation and showed that they were both strongly implicated in moDC maturation induced by IFX aggregates. Indeed, we found that neutralization of FcγRIIa inhibited DC activation, and consequently, Syk inhibition led to a decrease in T cell proliferation and cytokine production in response to IFX aggregates. Taken together, our results bring new insight, to our knowledge, on how protein aggregates could induce DC and T cell activation via the FcγRIIa-Syk signaling pathway.


Asunto(s)
Células Dendríticas/inmunología , Infliximab/inmunología , Activación de Linfocitos/inmunología , Receptores de IgG/inmunología , Quinasa Syk/inmunología , Linfocitos T/inmunología , Proliferación Celular/fisiología , Células Cultivadas , Humanos , Monocitos/inmunología , Transducción de Señal/inmunología , Factor de Necrosis Tumoral alfa/inmunología
4.
J Pharm Biomed Anal ; 185: 113252, 2020 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-32193039

RESUMEN

Immunogenicity related to the degradation of therapeutic monoclonal antibodies (mAbs) remains a major concern for their therapeutic efficacy and safety. Therefore, an analytical method allowing characterization and detection of mAbs degradation is mandatory. In this study, a simultaneous coupling of size exclusion chromatography (SEC) to native mass spectrometry (MS) and fluorescence detection (FLD) is proposed to detect degraded therapeutic mAbs and biases of structural changes (e.g. dimerization, denaturation) that may occur during native MS. A comprehensive study on infliximab behaviors have been performed under different mobile phase conditions (e.g. composition, pH, organic solvent, etc.) and MS parameters (e.g. gas temperatures, CID energies, etc.). Experimental conditions avoiding artificial denaturation and/ or dimerization have been defined. We have also demonstrated that under the developed conditions infliximab affinity towards its biological target TNFα is preserved. In addition, using this method dimers, denatured monomers and fragments could be detected in trastuzmab samples stressed by a long-term storage. These results were confirmed by using SEC coupled to ion mobility mass spectrometry as an orthogonal method for the detection of denatured monomer.


Asunto(s)
Anticuerpos Monoclonales/análisis , Control de Calidad , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/uso terapéutico , Química Farmacéutica/métodos , Cromatografía en Gel/métodos , Almacenaje de Medicamentos , Estudios de Factibilidad , Infliximab/análisis , Infliximab/química , Infliximab/uso terapéutico , Espectrometría de Masas/métodos , Conformación Proteica , Proteolisis , Trastuzumab/análisis , Trastuzumab/química , Trastuzumab/uso terapéutico
5.
J Chromatogr A ; 1601: 375-384, 2019 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-31160095

RESUMEN

Therapeutic monoclonal antibodies (mAbs) are complex glycoproteins and ensuring their safety, efficacy and quality is still challenging. Indeed, during their manufacturing process, they are exposed to several stresses that can lead to their denaturation, misfolding or dimerization. We report here a new method based on capillary electrophoresis coupled to native mass spectrometry (MS) with a sheath liquid interface to analyze an intact therapeutic mAb, Infliximab, under non-denaturing conditions that preserve its conformational heterogeneity as well as self-association without inducing further unfolding / denaturation. For capillary zone electrophoresis (CZE) separation, a triple layer coating using polybrene-dextran sulfate-polybrene was employed. A sheath liquid composed of isopropanol - water - acetic acid with a flow rate of 10 µL min-1 and mild MS conditions allowed optimal signal intensities. A specific mass spectrum was obtained for each Infliximab conformation in a "stressed" formulated preparation. This is the first time that within a single analysis different conformational states, i.e. native and unfolded monomers as well as dimers are simultaneously detected. The results and the lack of analytical bias arising from the CZE-MS conditions were confirmed by using atomic force microscopy (AFM) as an orthogonal technique. A middle-up approach combined to CZE-MS analysis of the stressed samples suggested that the dimer formation involved mostly Fab-Fab interactions.


Asunto(s)
Anticuerpos Monoclonales/análisis , Electroforesis Capilar , Espectrometría de Masas , Control de Calidad , Sulfato de Dextran/química , Bromuro de Hexadimetrina/química , Infliximab/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA